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Computing in GF(q) 

By Jacob T. B. Beard, Jr. * 

Abstract. This paper gives an elementary deterministic algorithm for completely 
d 

factoring any polynomial over GF(q), q = p ,criteria for the identification of 

three types of primitive polynomials, an exponential representation for GF(q) 

which permits direct rational calculations in GF(q) as opposed to modular arith- 

metic over GF[p, xl, and a matrix representation for GF(p) which admits com- 

puter computations. The third type of primitive polynomial examined permits the 

given representation of GF(q) to display a primitive normal basis over GF(p). The 

techniques developed require only the usual addition and multiplication of square 

matrices over GF(p). Partial tables from computer programs based on certain of 

these results will appear in later papers. 

1. Introduction and Notation. Let F be an arbitrary field and let (F)n denote 
the algebra of all n x n matrices over F under the usual matrix addition and multi- 
plication. If g(x) E F [x] is monic of degree n, we let C(g(x)) E (F)n denote the 

companion matrix of g(x). The set of all scalar matrices aIn of order n, a E F, is 
denoted Sn(F). From [2, Theorem 4] the ring extension Sn(F) [C(g(x))] of Sn(F) 
by the matrix C(g(x)) has no nonzero divisors of zero if g(x) is prime in F [x] . 

The converse is seen on remembering 

(1 .1) Sn(F) [C(g(x))] = {h(C(g(x))) h(x) E F [x], deg h(x) < n} 

and that g(x) is the minimal polynomial of C(g(x)) over F. This irreducibility 
criterion is the foundation for the basic algorithm we develop in Section 2. This algor- 
ithm and its present variations rely only on semi-intelligent brute force, yet it exhibits 
the utility of the representation for GF(q) as given in Section 3. It is that representa- 
tion for GF(q) which we stress at this time and which we anticipate may permit ad- 
vances in general computer techniques involving Galois fields, especially concerning pre- 
viously known and more sophisticated factorization routines [3], [4]. A usual sieve 
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for factoring in GF [q, x] which uses the representation is operational, but it is hoped 
that further attention to the matrix algebras (1.1) themselves will lead to a truly elegant 
algorithm for factoring g(x). The representation in Section 5 for an algebraic closure 
GF(p) of GF(p) is machine admissible and offers certain advantages. The identifica- 
tion of primitive polynomials in Section 4 was undertaken and included at the suggestion 
of L. Carlitz, to whom the author is most grateful. Partial computer results based on 
these techniques will appear in later papers, while extensive tables are prepared but un- 
published. Reasonable requests for specific results are invited. 

2. The Basic Algorithm. Let FP = GF(p) and let q = pd. It suffices to fac- 
tor monic polynomials g(x) E GF [q, x] having nonzero constant term and satisfying 
deg g(x) = n > 2. By an earlier construction [2, Theorem 11], we represent GF(q) 
as afield F of d xd matrices over FP,,F =Sd(FI) [C(f(x))] , where f(x) E FP [xJ 
is any fixed prime polynomial of degree d. Let C = C(g(x)) be the companion 
matrix (in (Fp)nd) of the natural polynomial g(x) E F[xl and consider the set 

(2.1) M = fh(C): h(x) E F[x], 0 < deg h(x) < n, h(x) monic, h(O) # 0}, 

noting that M C Sn(F) [C] C (Fp)nd . Order the set M by any scheme such that the 
corresponding sequence of degrees of the polynomials h(x) is nondecreasing. This 
ordering of M induces an ordering on the set HM of these polynomials h(x) and 
induces a lexicographic order on the Cartesian product M x M. Let M2 be the 
usual set product as computable in the ring (F)n and observe that M x M determines 
a subarray of the multiplication table for Sn(F) [C] . If the zero matrix ?dn is not 
contained in M2, then g(x) is prime and we are done. Otherwise, there exists a first 
element (Ai, A,) in M x M such that AiAj = odn EM2. In this case i 6 j, g(x) = 

hi(x)h1(x), hi(x) is a prime factor of g(x) of minimum degree, and hi(x) is the 
minimum prime factor of g(x) in HM. Hence hi(x) is prime in F[x] if 
deg h1(x) < 2 deg hi(x), and we are done. If deg h1(x) > 2 deg h,(x), then h,(x) is 
the minimum candidate prime factor of h,(x) in HM, in which case we redefine M 
(2.1) by setting g(x) = h1(x), n = deg h1(x), and consider only those hk(C(hj(x))) 
where k > i, retaining the original order on HM The complete factorization of our 
initial polynomial g(x) is clearly obtained after at most n - 1 applications of this 
procedure. 

Our basic algorithm constitutes a partial row search of the array of matrix prod- 
ucts determined by M x M for each successive M (as necessary). We compute the 
matrices in the array in order, aborting any computation on obtaining a nonzero entry, 
and consider only those matrix products such that the degrees and constant terms of 
g(x), hi(x), and hj(x) are consistent. In actual practice we modify the basic algorithm 
as follows. It is well known that for each matrix h(C(g(x))) E Sn(F) [CQg(x))] given 
by (1.1) this polynomial representation is unique, and that the first row vector of 
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h(C(g(x))) displays the coefficients (in ascending order) of h(x). Applying this know- 

ledge to the array M x M with M as in (2.1), the algorithm holds on computing only 

the first row vectors of these matrix products and comparing them against the 
appropriate zero vector. We are reminded that in this instance, these are row vectors over 

(Fp)d. This situation is improved in Section 3. The inefficiency of the trial and error 

search remains, unfortunately, so that the magnitude of the calculations involved makes 

even a usual sieve routine much more practical, given a "decent" representation for GF(q). 

3. Representing GF(q). The algorithms presented in Section 2 are independent of 

the representation used for GF(q), and while all calculations were performed modulo p 

for q = pd, there resulted a corresponding and considerable expenditure of time and 

available storage. We also seek an improvement over the usual methods of performing 

computations in GF(q) when q # p [4] and represent GF(q) as follows. Using a modi- 

fied sieve routine, we find a prime polynomial g(x) G Fp [x] of degree d. Checking 

initial row vectors, we choose g(x) such that C = C@(x)) has multiplicative order q - 1, 

so that the matrix C is a cyclic generator of the multiplicative group S (Fp) [C] * - 

GF(q)*,the isomorphism already established in [2, Theorem 2] . We associate the matrix 

Ci E Sn (Fp) [C] * with the exponent i of C, 0 6 i < q - 2, and represent the set 

GF (q)* by 

(3.1) F*={O,1,. ,q-2}. 

We choose to represent the set F externally by 

(3.2) F = {Z, O, 1, * * * , q-2}, 

and convert the character Z to - 1 for our internal machine representation. This 

device proves useful whenever incrementation is performed. (It and many other prac- 

tical suggestions are due to Karen I. West, the coauthor of several computer programs 

based on this paper.) It is clear that multiplication (0 is defined on F* by 

(3.3) rG s=r + s (mod q-1) 

and that the multiplicative inverse r-1 of r E F* is given by 

(3.4) r-1 = q - r-1. 

Any kth roots of r are readily found by solving the linear congruence kx r 

(mod q - 1), so that rational roots are easily calculated. Likewise, logarithms are trivial. 

From the identity Co' + CO = C"'(C0`Y + CaOt), it is seen that addition eD is com- 

pletely defined on F * by any one row of the addition table for the set F *. In 

particular, we compute the entries of its first row 

(3.5) 0 D O. 0 (D 1, * * *,e , ( (q - 2) 

using the first row vectors of the matrices C', 0 < i 6 q - 2, and denote these entries 
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from left to right as 

(3.6) O. 1, * ,q -2 

to obtain 

Z,r-s(modq- 1)=Z, 
(3.7) r ~s = r, s F*. 

(r - s(mod q - 1) + s)(mod q - 1), otherwise, 

The additive inverse 0 r of r E F* is given by 

r-j+q- 1, r<j, 
(3.8) Or= where T=O j=Z. 

r - j, r >rj, 

Both (3.7) and (3.8) are'seen on recognizing that the aforementioned identity causes any 
diagonal parallel to the principal diagonal of the addition table for F* to exhibit only 
the entry Z, or else its entries occur in a natural "increasing order" modulo q - 1 and no 
Z appears. Hence, our additive calculations in GF(pd) with d > 1 are merely "diagonal" 
shifts. Since GF(pm) is a subfield of GF(pd) if and only if m I d, GF(pm )* is generated 
cyclicly by a power of C, and GF(pd) contains precisely one such subfield GF(pm), then 
F readily displays its proper subfields. The fact that we continue to represent GF(p) by 

Zp, the integers modulo p, is an inherent but nonfatal bug in our representation. Namely, 
that in extending GF(q) nontrivially, we must rename the elements of GF(q). A repre- 
sentation of GF(q) obtained by the techniques of Section 5 would not have this fault, 
and this is a primary advantage of working with GF(p) as represented later. In Section 4, 
we examine a further condition on g(x) so that our representation F for GF(q) displays 
a primitive normal basis over Fp. First, we remark on important details concerning the 
determination of the addition table for F*. 

To obtain the sums (3.5),the "brute force"approach is again highly impractical. No 
algebraic results known to the author yield a satisfactory partition of the array of initial 
row vectors of the matrices Ci such that the elements of F represented by their sums 
with the identity vector [1, 0, * * *, 0] are quickly identified. Indeed, (3.9) below indi- 
cates that no such partition exists. We avoid the (potential) comparison of these two 
arrays of row vectors as follows. Using the uniqueness of the initial row vectors of the Ci, 
we can apply the basis representation theorem from elementary number theory, base p. 
Let Ci have as its first row the vector [az1 Ol.d ], and store i in B(k) where 
k = Idj=O aj+ 1 pl. Then i = B(l) where I= (a + 1)(mod p) + Id- 1 p. Hence we 
have the sums (3.6) directly as 

B(k + 1), Op -1, 
(3.9) 1 = 

B(k- p + 1), 1=p-1. 
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Given the appropriate defining polynomials g(x) E GF [p, x] of degree d (see Section 

4), Beard and West have obtained addition tables (3.5) for all GF(pd) satisfying p < 
31, pd < 33,000 in 37.4 minutes (CPU) on an IBM 370/155. The time required for 

GF(21 5) was 6.54 minutes (CPU). 

4. Primitive Polynomials. Let a E F = GF (pd) have minimal polynomial f(x) 

over Fp. Historically, a is called a primitive element of F if and only if pd _ 1 is 

the smallest positive integer k such that aok = 1; i.e., if and only if a has order 

pd _ 1. Whenever k is this smallest positive integer the element a is said to belong 

to the numerical exponent k. If a is a primitive element of F, then f(x) is called 

a primitive polynomial, and if a belongs to the numerical exponent k then f(x) is 

said to belong to the numerical exponent k. 

Ore introduced another type of primitive element as follows. Each 1 E F is a 

root of a unique monic polynomial g(x) = ET 4a xp" in Fp [xP] of minimum degree 

m < d, and 13 is said to belong to the p-polynomial g(x). If 13 belongs to xP - x 

Ore calls 13 a primitive element of F. This establishes another type of primitive poly- 
d 

nomial-the minimal polynomial h(x) of 1 over Fp where 13 belongs to xP _ x. 

Whenever 1 e F has minimal polynomial h(x) over Fp and 13 belongs to g(x) E 
Fp [xP], then h(x) is said to belong to g(x). 

Carlitz [5] refers to a and 13 respectively as primitive elements of the first and 

second kind, and calls their corresponding minimal polynomials f(x) and g(x) primi- 

tive polynomials of the first and second kind respectively. We define 1(x) E Fp [x] to 

be primitive of the third kind if and only if 1(x) is primitive of both the first and 

second kind. If 1 E GF(pd) is a primitive element of the second kind, then the set 

{13, p", * * *, 1p3 } is a normal basis for GF(pd) over GF(p). If 13 is primitive 

of the first and second kind, i.e. third kind, Davenport [6] called {13, 31P, * * *, 1P31 } 

a primitive normal basis for GF(pd) over GF(p) and showed that such a basis always 

exists. Carlitz [5] obtained the result earlier for pd sufficiently large and considered 

a more general question. Given k I p- 1 and a p-polynomial g(x) -xP x, does 

there exist 1 G GFcpd) which belongs to both k and g(x)? The answer was affirma- 

tive for pd large and k deg g(x) sufficiently large. It is known to be negative in 

general, however, and our programs have contributed further information to appear in 

due time. Both Ore [7] and Carlitz [5] considered the generalized problem: if 0 E 
GF(qm), q = pd, let a(x) = axO Xqe GF [q, xq] be the unique monic q-poly- 

nomial of minimum degree s < m such that a(O) = 0, and say that 0 belongs to 

a(x). If 0 belongs to X - x the set {0, 0q * 0qrn-i } is a normal basis for 

GF(qm) over GF(q). Accordingly, we define a prime polynomial f(x) E GF [q, x] 

of degree m to be primitive of the first, second, or third kind as any root 0 of f (x) 

in GF(qm) respectively belongs to the numerical exponent qm - 1, the q-polynomial 
- x, or both. It is easily verified that all three of these concepts are root indepen- 
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dent since f(x) is assumed prime. Ore [7] goes further and shows that any monic 
g(x) E GF [q, x], prime or not, divides a unique monic q-polynomial a(x) = 

=Yoar.qr 
E GF [q, xq] of minimum degree y < deg g(x). 

By Davenport's result [6], we can choose g(x) in Section 3 to be primitive of 
the third kind so that the elements 1, p, * * * , pd- 1 of F * (3.1) form a primitive 
normal basis for GF(pd) over GF(p). More generally, we are able to find the q-poly- 
nomial to which any monic polynomial g(x) E GF [q, x] belongs, q = pd, d > 1. The 
technique follows immediately from observing that irregardless of the primality of g(x), 
we have g(x)Ia(x) in GF [q, x] if and only if a(C) = 0, where C = C(g(x)), the 
companion matrix of g(x). Again, we compute only the first row vector of a(C). Ob- 
serve that whenever the constant term of g(x) is nonzero, the matrices Cqr may be 
computed modulo the multiplicative order of C. A routine for finding the order of C 
is optimized by computing Ck for only the admissible values of k. These k are 
precisely the divisors of F(g,(x)), 1D the generalized Euler function on GF [q, x;. This 
is seen since C is nonderogatory and has minimal polynomial g(x) over GF [q, x], 
so that the order of the multiplicative group of nonsingular matrices in Sm(GF(q))[CI 
is F(g(x)), where m deg g(x). 

Subject only to storage and time limitations, we are now able to factor any monic 
f(x) e GF [q, x] satisfying f (O) 0 0, find its q-polynomial, compute its numerical 
exponent whenever f(x) is prime, and identify any prime f(x) as being merely 
prime or primitive of the first, second, or third kind. For nonprime f (x) we also 
calculate F(f (x)). Our results are checked at run-time whenever possible against the 
following enumeration results, all trivially obtained from well-known results. 

THEOREM 1. GF [q, x] contains precisely q(qm -1)/m primitive polynomials 
of the first kind of degree m. 

THEOREM 2. GF [q, x] contains precisely 4?(xm- 1)/m primitive polynomials 
of the second kind of degree m. 

Ore's observation [7] that GF(qm) has precisely 1(xm - 1)/m distinct (un- 
ordered) normal bases over GF(q) leads directly to Theorem 2. The number N' of 
primitive elements of the third kind in GF(q') is known asymptotically in the 
general case due to Carlitz [5] and is given by 

N' I= (qm - 1) F(xm - 1)/qm + Q(qm(?/2+6)). 

THEOREM 3. GF [q, x] contains precisely N'/m primitive polynomials of the 
third kind of degree m. 

Finally, the number of prime polynomials of given degree in GF [q, x] is 
checked against the result of Albert [1, p. 130]. One option of a program by Beard and 
West is a search for primitive polynomials of the third kind. At the present time a 
primitive polynomial of the third kind over GF(pd) of degree n has been obtained 
for each p, d, n satisfying p < 102, pd < 103, pdn < 106. Under the natural lexi- 
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cographic order on GF pd, x] as represented in Section 3, each of these polynomials 

is the first primitive polynomial of the third kind of its degree. The search for them 

was eased by the observation that the sum of the roots of f (x) is nonzero whenever 

f (x) is primitive of the second kind. Since our addition tables for GF(q) are readily 

obtained (Section 3) once a primitive polynomial of the third (first) kind is known, we 

will publish this list of polynomials rather than the addition tables. 

5. Representing GF(p). The remainder of this paper is devoted to obtaining a 

representation for an algebraic closure GF(p) of GF(p). Let (GF@p))o. denote the 

algebra of all row and column-finite matrices of infinite order over GF(p). For n > 1 

we will represent GF(pn!) recursively as a subfield of (GF(p)).. Berlekamp's [4] con- 

cept of GF(p) as GF(p'0!) is extremely nice, and we find it both appropriate and 

convenient to denote our representation of GF(p) by GF(p !). Not only are the 

operations in GFqf?o!) those of normal matrix addition and multiplication modulo p, 

but each matrix A E GF(p' !) exibits the smallest n such that A E GF(pn !). The 

construction of GF@p'!) given here generalizes the extension technique developed in 

[2, Theorem 9] and our notation and terminology is that of [2] with only obvious 

modifications. Specifically we remember that for any square matrix A, the matrix 

k-sum(A) is the k-fold direct sum k-sum(A) = diag(A, * * , A), and that for any 

set T of square matrices we define k-sum(T) = {k-sum(A) A E T 1. 
For each m, 1 m < oo, let Im denote the multiplicative identity of the 

algebra (GF(p))m, and let Sm (GF(p)) denote the field of all scalar matrices aIm, 

oa C GF(p). Let f2(x) be any prime polynomial of degree 2 over GF(p) and define 

F2! = S2 (GF(p)) [C(f2 (x))] 

so that F2! _ GF(p2) [2, Theorem 2]. We define, GF(pl!) S.(GF(p)) and 

GF(p2!) = oo-sum(F2!), and have GF(p1!) C GF(p2!). 
Let f3(x) be any prime polynomial of degree 3 over F2! and note that 

GF(p2!) = S. (F2!). Using the companion matrix C(f3(x)) in (F2!)3 of f3(x), we 

define 

F3! = S3(F2!)[C(f3(X)A 

Then F3! -GF(p6) [2, Theorem 4] and we define 

GF(p3 !) = oo-sum(F3!) = SO(F3!) 

so that GF(p !) C GF(p2!) C GF(p3!). 
Having constructed GF(pn!) = Sn(Fn!), we choose any prime polynomial 

fn+i(x) of degree n + 1 over Fn! and define 

GFp(n+ 1)!) = S(F(n+ i)l 
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where 

F(n + 1)! = Sn + 1 (Fn!) IC (fn+ 1 (X)) 

and C(fn + 1(x)) in (Fn!)n+1 is the companion matrix of fn + 1(x). Remembering 
the natural isomorphism between (Kn!)n + 1 and (K)(n + 1)! for arbitrary fields K, 
we see that GF(p(n + 1)!) is a subfield of (GF(p))o, and has order p(n + 1 )!. Further- 
more, GF(pl!) C * * * C GF(pn!) C GF(p(n+1)'). We define GF(p'!) = 

Un=i GF(pn!) and are done. 
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Some Primitive Polynomials of the Third Kind 

By Jacob T. B. Beard, Jr.* and Karen 1. West 

Abstract. This paper gives the first primitive polynomial of the third kind of degree 
n over GF(pd) for each p, d, n satisfying p < 102, pd < 10 pdn < 106. 

In the preceding paper [1, Section 3] Beard introduced an exponential representa- 
tion for GF(pd) which allows full use of its multiplicative structure and permits direct 
rational calculations in GF(pd). As indicated in [1, Section 4] , such representations 
are easily and quickly obtained once primitive polynomials of the third kind of degree d 
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